Code No: 113BU

b)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, February/March - 2016 SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE, ETM)

Wax. War		(000		The The The The Tare !	75
Time: 3 Hours	e: 3 Hours			Max. Marks:	12

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

[25 Marks] PART- A Determine the possible base of the numbers in the operation 302/20=12.1. [2] 1.a) [3] Reduce the expression A'B(D'+C'D)+B(A+A'CD) to one literal. b) [2] What are static hazards? c) [3] Construct full adder using decoder. d) What is the difference between characteristic table and excitation table? [2] e) Show the characteristic equation for the true output of JK flip-flop is f) [3] Q(t+1)=JQ'+K'QHow many bit counter is needed to to provide a clock with cycle time of g) 50ns if the clock generator produces pulses at a frequency of 80 MHz? [2] Compare Synchronous and Asynchronous counters. [3] h) [2] What are compatible states? i) Explain the difference between ASM and conventional flow chart with respect j) [3] to timing. [50 Marks] PART-B State De-Morgan laws. 2.a) Perform the following arithmetic operations in binary using signed 2's complement b) (ii) (-62) - (-23). representation for negative numbers (i) (+62) + (-23)Encode the information character 01101110101 according to the 15 bit Hamming. c) [2+4+4]OR Obtain the 1's and 2's complement of the binary numbers 10000000 and 0000001. 3.a) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa. b) Obtain the truth-table of the function (xy+z)(y+xz) and express the function in sum of c) [2+4+4]min terms and product of max terms. For the function $F(w,x,y,z) = \sum (1,2,3,5,13) + \sum \varphi(6,7,8,9,11,15)$, find the minimal sum 4.a) of products and product of sums expression. Implement the function $F(A,B,C,D)=\sum (0,1,3,4,6,8,15)$ using 4x1 MUX. b) OR Design a 3-input majority circuit using Multiplexer whose output is equal to 1 if the 5.a) input variables have more 1's than 0's. The output is 0 otherwise. Find the min terms of the function wxy+x'z'+w'xz by plotting the function in a map. b) [5+5]Compare Sequential and Combinational circuits. 6.a) Design a JK flip-flop using Dflipflop. 2-to-1 line MUX and inverter. [4+6]

- 7.a) What is the difference between a latch and flip-flop?
 - b) Explain the positive edge triggered D flip-flop with asynchronous reset.

[4+6]

- 8.a) A sequential circuit with two D flip-flops A and B, two inputs x and y; and one output z is specified by A(t+1)=x'y+xA, B(t+1)=x'B+xA, z=B. Draw the logic diagram and list the state table. Draw the state diagram.
 - b) What is a universal shift register?

[8+2]

OF

- 9.a) Design a counter using T flip-flops with repeated sequence 0,1,3,7,6,4.
 - b) Show that a Johnson counter with n flip-flops produces a sequence of 2n states. [5+5]
- 10.a) Draw the multilevel NAND circuit for expression F = (AB' + CD')E + BC(A + B)
 - b) Reduce the given expression to a minimum number of literals:

i)
$$\overline{(BC' + A'D)}$$
 $\overline{(AB' + CD')}$

ii)
$$AB' + CD\overline{(A+B)}$$
.

[5+5]

OR

11.a) Find the equivalence partition and corresponding reduced machine in standard form.

PŚ	NS,Z					
	x=0	x=1				
A	F,0	B,1				
В	G,0	A,1/				
C	B,0	C,1				
D	C,0	B,1				
E	D,0.	A,1				
-F	E,1	F,1				
G	E,1	G,1				

b) Explain the control implementation using MUX.

[6+4]

--00000--

Code No: 113BU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015

SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE, ETM)

Note: This question paper contains two parts A and B.

Time: 3 Hours

Multiplexer.

 $f(a,b,c,d) = \Sigma(0,3,4,8,9,15).$

Max. Marks: 75

Note:	This question paper contains two parts A and B.	. Da								
	B. A discompulsory which carries 25 marks. Answer all questions in Fait A.									
	Part D consists of 5 Units. Answer any one full question from	each	unit.							
	Each question carries 10 marks and may have a, b, c as sub question	S.								
	PART- A	(25 N	(larks							
		(20 2.	[2M]							
1.a)	Convert (FFF) _H =() ₁₀ .		[3M]							
b)	Draw the 1-bit comparator diagram with logic diagram.	N.	[2M]							
c)	Implement 1-bit Full adder using gates.		[3M]							
d)	Implement one bit half subtractor using Gates.		[2M]							
e)	Draw the excitation table of JK Flip Flop.		[2M]							
- f)	Write the excitation table of D flip flop.	ы.								
g)	Define state diagram.		[2M]							
h)	Define FSM.		[3M]							
i)	How are asynchronous sequential machine characterized?		[2M]							
j) :	What is the difference between Mealy and Moore Models?		[3M]							
	PART-B	(50	Marks)							
2.a)	Solve the following:									
	i) $(27.125)_{10} = (3)_8$									
	ii) $(10.6875)_{10} = (1)_2$									
	iii) $(237.75)_8 = (1)_{10}$									
b)	Obtain the complement of the following Boolean expressions		25.0							
	i) A'B+A'BC'+A'BCD+A'BC'D'E		6. 8							
	ii) A+B+A'B'C.		[5+5]							
	OR									
3.a)	Encode the decimal numbers into:		11.							
	i) $(56)_{10} = ($) Gray code									
	ii) $(20.305)_{10} = ($) Excess-3 code									
	iii) $(32.89)_{10} = () BCD code$									
b)	Realize the following logic function using only NAND gates									
	$f(a,b,c,d) = \Sigma (0,2,4,6,9,11,13,15).$		[5+5]							
4.a)	Minimize the following function using K-map.	. 13.1	y jar							
	$f(A,B,C,D) = \Sigma_m (0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13)$									
b)	Minimize the following expression using K-map and realize using N	OR	4 4							
	gates. $f(A,B,C,D) = \prod_{i=1}^{n} M(1, 2, 3, 8, 9, 10, 11, 15)$.		[5+5]							
	OR	·	[]							
5.a)	Determine the prime implicants of the function.									
	$f(W,X,Y,Z) = \Sigma$ (1,4,6,7,8,9,10,11,15). Also minimize the logic f	imeti	n naine							
	Tabulation method.	unon	ou asing							
b)	Implement the following logic function using 16:1 Multiple	110	d 0.1							
-,	Multiplexer	XCI	and 8:1							

[5+5]

6.a) b)	Explain the techniques used to eliminate racing condition in JK flip flops. Design a S-R latch using 2-input NAND gates. OR [5+5]
7.a) b)	Convert a clocked S-R flip flop to a T-flip flop. Explain the design of a clocked Flip-Flop. [5+5]
8.a) b)	Design a 4-bit binary UP/DOWN ripple counter. What are the different types of registers? Explain the Serial Input Parallel Output Shift register. [5+5]
9.a) b)	Explain the operation of RS-clocked flip-flop with logic diagram. Show the relevant waveforms. Design a mod-10 Ripple counter using T flip flops and explain its operation.[5+5]
10.a) b)	Discuss about completely and incompletely specified sequential machines. What are State Machine charts? What are the principal components of State Machine chart? [5+5]
•	Implement a weighing machine with the help of SM Chart. Draw the typical flow chart, State Machine chart and state graph diagrams. [5+5]
X**	- -00 O 00

Code No: 54010

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year II Semester Examinations, May - 2015 SWITCHING THEORY AND LOGIC DESIGN (Common to EEE, ECE, BME, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1.a) Explain the procedure for converting Gray code to Binary code with an example.
 - b) Solve for X
 - i) $(F3A7C2)_{16} = (X)_{10}$
 - ii) $(2AC5)_{16} = (10949)_X$
 - iii) $(0.93)_{10} = (X)_8$
 - iv) $(4057.06)_8 = (X)_{10}$

[7+8]

- 2.a) Write the Dual of
 - i) (A+BC'+AB)
 - ii) (AB+B'C+CD)
 - b) Prove the following identity XY + X'Y' + YZ = XY + X'Y' + X'Z.

[8+7]

- 3. Use tabular procedure to simplify the given expression $f(v,w,x,y,z) = \sum m(0,4,12,16,19,24,27,28,29,31)$ in SOP form and draw the circuit using only NAND gates. [15]
- 4.a) Design a logic circuit to encode a 2ⁿ input bits to n bit output.
 - b) Design a 4 bit Parallel adder using full adders.

[8+7]

- Design a sequential logic circuit of a 4 bit counter to start counting from 0000 to 1000 and this process should go on. Draw the ASM chart and design the Data processing unit and the control unit.
- 6.a) Draw the block diagram of a ROM. Define address and word. Relate the number of output lines with number of bits in a word. How an output word can be selected?
 - b) For a 64×8 ROM, determine the number of words it contains and the size of each word. How many output lines are there for the ROM? [7+8]
- 7.a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
 - b) Explain the operation of JK flip flop with the help of input output waveforms.

[8+7]

Code No: 113BU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2015 SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks.

PART- A

(25 Marks)

1 0)	Find the complement of (AB'+C)D'+E.	[2M]
1.a)	What are single error detecting codes and how error detection is	
b)		[3M]
	accomplished?	[2M]
c)	What are static hazards?	[3M]
d)	Explain the six variable Karnaugh map.	[2M]
e)	Define sequential circuit and give example.	[3M]
f)	Explain about clocked T flip-flop.	
g)	What is the difference between symptoms	quential [2M]
	circuits?	
h)	A 3-bit binary ripple counter uses T -flip-flops that trigger on the negative	flon are
	the clock. What will be the count if complement outputs of the flip-	[3M]
	connected to the clock? Draw the timing waveform.	
i)	What is the difference between flow chart and ASM chart?	[2M]·
j)	What are the capabilities of finite state machine?	[3M]
3,		
	PART-B	
		Marks)
2.a)	Find the 16's complement of AF3B.	
b)	Formulate a weighted binary code for the decimal digits using weights 0,5	,1,1.
c)	Implement F=(AB'+A'B)(C+D') using NAND gates.	2+4+4]
, 0)	OR	
3.a)	Convert decimal 9126 to both BCD and ASCII codes.	
b)	Show that a positive logic NAND gate is a negative logic NOR gate a	and vice
U)	versa.	
ما	Express the complement of $F(A,B,C,D)=\sum (0,2,6,11,13,14)$ in sum of min	terms.
c)	Express the complement of I (13,2,0,2) Z(0,7,7,7,7,7	2+4+4]
4 0)	Use the tabulation procedure to generate the set of prime implicants	
4.a)	obtain all minimal expressions for the function:	
	$\Sigma_{(2)} = -1 - \Sigma_{(1)} = 1.4.5 + 7.0 + 1.1.5 + \Sigma_{(2)} = 1.0 + 1$	
	$F(w,x,y,z) = \sum (0,1,4,5,6,7,9,11,15) + \sum \varphi(10,14)$	canacity
b)	Implement the function $F(A,B,C,D)=\sum (0,1,3,4,6,8,15)$ using required	[5+5]
	decoder and logic gates.	[5,5]
	OR	
5.a)	Design a BCD adder.	
b)	Find all the prime implicants for the Boolean function:	[5±5]
		1

 $F(w,x,y,z)=\hat{\Sigma}(1,3,4,5,10,11,12,13,14,15)$ and find which are essential.

[5+5]

- 6.a) With a neat diagram explain about D-Type positive edge triggered flip-flop.
 - b) Design a T flip-flop using JK flip-flop. Use k-maps for the design. [5+5]

OR

- 7.a) What is the difference between edge triggering and level triggering? Explain about Edge triggered JK flip-flop with a neat diagram.
 - b) Design a JK flip-flop using SR flip-flop. Use k-maps for the design. [5+5]
- 8.a) Design a sequential circuit with two D flip-flops A and B, and one input x. When x=0, the state of the circuit remains same. When x=1, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00, and repeats.
 - b) List the basic types of shift registers in terms of data movement. [8+2]

OR

- 9.a) Design a divide by 6 ripple counter using T flip-flops.
 - b) Design a counter using JK flip-flops with the repeated binary sequence 0,1,2,3,4,5,6. [5+5]
- 10.a) Explain the state minimization using merger graph and merger table.
 - b) Explain the multiplexer method of implementing ASM charts. [5+5]

OR

11.a) Determine the minimal state table equivalent to the state table given:

PS	N	s,z						
	1							
	x=0	x=1						
7. H								
Α	A,1	E,0						
В	A,0	E,0						
C	B,0	F,0						
D	B,0	F,0						
E	C,0	F,1						
F	C,0	F,1						
G	$_{s}$ D,0	H,1						
H	D,0	H,1						
	B C D E F	x=0 x=0 A A,1 B A,0 C B,0 D B,0 E C,0 F C,0 G D,0						

b) Draw the ASM chart and state table for a 2-bit counter having one enable line E such counting is enabled when E=1 and counting is disabled when E=0. [5+5]

KE

Cöde No: R09220204 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD

B.Tech II Year II Semester Examinations, May-2013

Switching Theory and Logic Design (Common to EEE, ECE, BME, ETM)

Time: 3 hours

Answer any five questions All questions carry equal marks

Convert the decimal number 234 to binary, octal and hexadecimal number 1.a) Find the canonical product of sums form for the function F(x,y,z) = x'y' + z'x''Find the sum of -8 + 2 using signed 2's complement representation. Prove the following identity xy + x'y' + yz = xy + x'y' + x'z. 2.a) Simplify the given function $F(w, x, y, z) = \Sigma (0, 1, 2, 3, 4, 6, 7)$ to minimum b) number of literals. For the given function $F(w, x, y, z) = \Sigma (0, 1, 2, 3, 4, 6, 7, 9, 11, 15)$ 3.a) i) Show the K-map ii) Find all prime implicants and indicate which are essential. iii) Find a minimal expression for F and realize using basic gates. Is it unique? Design a.16x1 multiplexer using 4x1 multiplexers only. Use tabulation procedure to generate the prime implicants and essential prime implicants and to obtain all minimal expression for the given function $F(A, B, C, D) = \Sigma (1, 5, 6, 12, 13, 14) + d (2, 4).$ (15)

Define static:hazard. Illustrate with example:::

Design a combinational circuit that converts the given binary number to excess-3 code. (6+9)

6.a) Design a mod-10 counter using JK flip-flops.

Write the characteristic table, characteristic equations and excitation table for b) RS, T and D flip-flops.

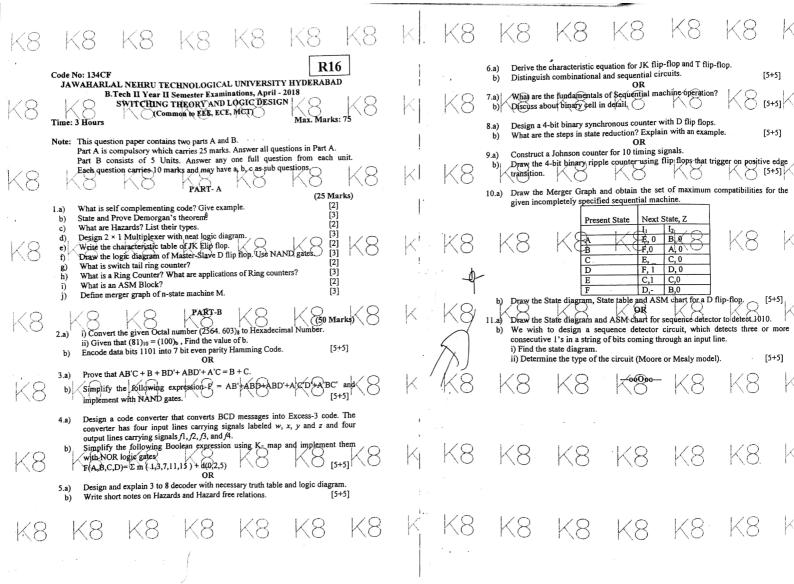
Illustrate the completely specified function with example. Write a procedure to 7.adesign completely specified functions.

Define the terms primitive flow table and reduced flow table. b)

(10+5)

∹8:--: Write short notes on

a) Incompletely specified functions


b) Asynchronous state machines

c) Logic synthesis.

(5+5+5)

R07 Cöde No: 07A4EC99 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year II Semester Examinations, May-2013 Switching Theory and Logic Design (Common to ECE, ETM) Time: 3 hours Max. Marks: 80 Answer any five questions All questions carry equal marks Convert the hexadecimal number AE28 to octal, binary and decimal number 1.a) KE : b) State and Prove Huntington postulates. 2.a) State and prove the Demorgan's theorem Simplify the given function $F(w, x, y, z) = \Sigma (0, 12, 13, 14, 15)$ using Boolean b) (7+9)theorems to minimum number of literals. For the given function $F(w, x, y, z) = \Sigma (0, T, 2, 3, 6, 7, 9, 11, 15)$ 3.ä) i) Show the K-map ii) Find all prime implicants and indicate which are essential. iii) Find a minimal expression for F and realize using NAND gates. Is it unique? (10+6)Implement the Function x'y + y'z using 2×1 multiplexer only. b) Use tabulation method to generate the prime implicants and essential prime implicants and to obtain all minimal expression for the given function $F(A, B, C, D) = \Sigma (0, 1, 2, 4, 5, 12, 13, 14) + d (6, 15).$ (16)Realize the Full adder using NAND gates only. 5.a) Design a combinational circuit that converts the binary number to gray code: :::: Design Mod-10 counter using JK flip-flops. 6.aWrite the characteristic table, characteristic equations and excitation table for b) (8+8)RS, T and D flip-flops. Illustrate a incompletely specified function with example. Write a procedure to simplify the incompletely specified function to minimum number of literals. Define the terms prime implicant and essential prime implicant. Give example for b) (8+8)each. Design a combinational circuit to generate a parity generator circuit. Write a procedure to identify whether a given function is symmetric or not.

(8+8)

		1	J. J. W. W.	700	103	8/20	D	1 Your		123-13	100		
501					R15		50						
Co		1 Semester Exa	DLOGICAL UNIV	er/December	DERABADE .	ИЭ	19	7.a) Den	ve the characterist lain the Race arou	ic equation of JR nd condition in fl	flip flop from the	e Excitation table	e. M9 [5+5]
The state of the s	ne: 3 Hours		e ECE, EIE, ETM)	DIDIGIT.	Max. Marks: 75				gn a Ring counter ne state, state diag			ny one as an exa	mple. [5+5]
-	e. This question imper of Part A is compulsory Part B consists of 5 L Each question carries	which carnes 25 inits. Answer any	marks. Answer all y one full question f	rom each unit.	art A.	N9		b) Desi dow	gn a coonig circu gn a 3-bit up/dow n when M=0.	n counter which	counts up when t	the control signal	M=1 and counts [5+5]
la) b)	What are the differen	IN PA	ART- A	ИЭ	(25:Marks) [2] [3]	МЭ	19		w the merger grap ified sequential m	achine for given	state table NS.Z	и 9	the incompletely
0 0 0 0	What is the prime important to the full subtract to Define the Propagation Draw the conversion Define the ring count	plicant chart? for using X-OR a in delay time, table of \$R flipfler.	and AOI gates. Op to JK firpflop.	W.S	[2] [3] [.] [2] -(3]	МЭ	F	ИЭ	B G[C] D	E,0 F,0 F,1 C,1	B. A. C. D. D. B.	,0 ,0 ,0 ,0 ,0	ИЭ
B)	What are the capabilit Draw the state box an	ties of FSM?		harts.	[2] [3] [2] [3] [4]	ЫЭ	9	II.a)Drav	v and explain the ov v the State diagram	iata path subsysten, stale lable and			⋈ ુ ક+ક]
2.0)	Convert the gray num	ber 10110101 int	io:		(50 Marks)					0	O00		
b) 3.a) b)		on in BCD using a property of the property of	OR	ite to realize w lraw the circuit	ith the two input	<u>-</u> W9		Ма	МЭ	W9	W9	W9	Щ9 .
4.p)	Using the QM method F=Em (4,52,5,839,)+c Give the limitations of	(10,11;12;13,14, K-mapping met	15). [4] [7] hod.	r µ9	[49 [5+5]	M9	9	μ9	ИЭ	МЭ	149	МЭ	М9
5.a) b) b) 6.a)	Design the 8:1 MUX Design a combination XS-3 code input.	for the given Boo all circuit to dete	ect the decimal nu	mbers 0,2,4,6	2,13,14,15). and 8 in a 4-bit	МЭ	9	ИЭ	ИЭ	Ш9	МЭ	ИЭ	W9
b)	Draw and explain the	operation of the M	faster Slave SR flip	p-flops with bl	ock diagram. [5+5]								Alles de
14		M9	or 149	49	M9	ИЭ	9	МЭ	ИЭ	И9	M9	Д 9	Ш9
-										1			